Contact Us +1 720-224-5675 sales@lemuriatechnologies.com

Cardiovascular Treatment PEMF

Author:

Bruce Gelerter

Abstract:

Introduction

A system and method for treating cardiovascular disease utilizes electromagnetic fields (EMF) applied by non-invasive or minimally invasive procedures. The EMF is applied to existing vascular structure to modulate blood flow and blood vessel growth in the patient.

Description

The major component of morbidity and mortality attributable to cardiovascular disease occurs as a consequence of the partial or complete blockage of vessels carrying blood in the coronary vascular system and in peripheral vasculature. When such vessels are occluded, various clinical syndromes may result from death of tissue previously nourished by the occluded vessels or inability of the vessels to transport sufficient blood supply to regions requiring high blood consumption and accompanying nutrients. In some individuals, blood vessel occlusion is partially compensated by the natural process of angiogenesis, in which new conduits are formed to replace the function of the impaired vessels. These new conduits, called “collateral” vessels, may facilitate restoration of blood flow to the deprived tissue, thereby constituting “natural bypasses” around the occluded vessels. However, some individuals are unable to generate sufficient collateral vessels to manage the consequences of diminished blood flow from cardiovascular disease.

At present, blood vessel occlusions are usually treated by mechanically enhancing blood flow or by medical reduction of oxygen demands in the involved tissues or organs. Mechanical enhancements are provided most commonly by employing surgical techniques that attach autologous or synthetic vascular conduits proximal and distal to the areas of occlusion, thereby providing bypass grafts, or revascularization by various means to physically enlarge the vascular lumen at the site of occlusion. These procedures involve such devices as balloons, endovascular knives (atherectomy), endovascular drills, and the like. The surgical approach is accompanied by significant morbidity and even mortality, while the angioplasty-type processes are complicated by recurrent stenoses in 25-35% of cases. Successful mechanical revascularization depends, inter alia, on accessibility of the occluding stenosis to such procedures. Clearly, there remains a pressing need for means to stimulate angiogenesis to provide collateral blood flow by non-invasive or minimally invasive procedures such as PEMF therapy.

Summary of the PEMF 4000’s cardiac stimulating effect

From a clinical perspective, the choice to use such non-invasive revascularization would be particularly appropriate in patients without reasonable options for mechanical revascularization because of inaccessible location of the stenosis, diffuse vascular disease, or poor overall medical condition for surgical or even endovascular intervention; as an adjunct to surgical or endovascular interventions, in which the anatomy of the patient’s blood vessels precluded revascularization of all ischemic regions (i.e., incomplete revascularization using other modalities); as an adjunct to the application of other mechanical stimuli such as laser channel formation (transmyocardial laser revasularization) which have been found to reduce symptoms of ischemia; as an adjunct to the administration or direct application of genetic or growth factor agents also intended to facilitate vascular growth or angiogenesis; and in patients with ischemic disease and attendant symptoms who are not yet appropriate candidates for the above interventions, thereby favoring a non-invasive procedure and making possible earlier therapy attended by virtual absence of morbidity.

Potential forms of energy fields include electromagnetic fields that are pulsed over a wide range of frequencies, intensities and pulsed waveform shapes (PEMF). Electromagnetic fields may also be generated in a continuously oscillating, nonpulsed manner, thus providing a sinusoidal waveform. Specific combinations of these variables deliver a range of biological effects that can be tailored to desired results. Other energy forms, including pulsed or continuously-generated microwave-radiated energy and ultrasonic energy, may be applied. In the case of PEMF, application involves placement of coils around the regions of tissues in which collateralization is desired. One approach is to embed the coils in a cloth wrap, which may be worn as a garment surrounding the body area of interest. For cardiac applications, a vest-type garment may be fabricated. For peripheral applications a wrap, i.e., either around the leg or arm, can be designed to deliver the desired field to the affected organ or tissue.

General description

It is important, in the application of electromagnetic fields to facilitate or prevent angiogenesis, that the body’s region of interest be subjected to an essentially homogeneous electrical field for maximum efficacy and safety. This means that the treatment field should have specific spatial and temporal characteristics. To achieve this focused treatment environment with deep tissue penetration, pulsed EMF is preferred (PEMF).

Spatial Characteristics

An apparatus is designed to deliver PEMF with the appropriate spatial characteristics for treatment of the region of focus in three dimensions. For example, the field must be sufficiently homogeneous with respect to biological effects throughout the cardiac volume in the case of coronary angiogenesis or other target areas.

A degree of spatial specificity is assured by the fact that ischemic tissues possess increased sensitivity to a variety of proangiogenic stimuli. Accordingly, regions of the muscle or surrounding organs which are not actively ischemic by virtue of limited blood flow would not be expected to respond to PEMF as readily as ischemic tissues. In ischemic tissues, a variety of other receptor and growth factor gene expressions occur in response to the ischemia, thereby conferring enhanced sensitivity on the field. High resolution of the spatial characteristics of the field to restrict exposure to target tissues are usually not necessary. Instead, it is sufficient that adequate field amplitude be directed to the target region to provide a stimulus that is greater than a threshold required to yield a desired biologic response.

One approach for providing the desired PEMF signal to the target tissue volume, either including the heart, or peripheral musculature, is the use of paired (Helmholtz) coils which are placed in a parallel configuration separated by a distance approximately similar to the diameter of the coils, so that the space between the coils encompasses the target volume for treatment. The coils are then energized simultaneously. This arrangement results in a substantially homogeneous field within the target volume, which will thus produce biologically significant effects therein. For cardiac angiogenesis, coils would be positioned on the anterior chest wall and on the back, at the level of the heart.

Enhanced PEMF effects in the cardiac region in comparison to other areas of the thorax may also be provided by intermittent application of a PEMF using anterior and posterior coils alternating with PEMF employing left and right-sided coil placements. The fields with alternate interaction from the anterior-posterior and the side-to-side direction provide a convergence of both fields upon the cardiac volume.

References

1. March, K. L. (2001). U.S. Patent No. 6,200,259. Washington, DC: U.S. Patent and Trademark Office.

Trackback from your site.

Find Out If You Qualify for Financing

100% financing available. We offer low rates, flexible terms, an easy “no
paperwork” application, and same day approval

Apply Now >